1. Team Overview

Team Zabeta consists of five members: Michael Brooks, Owain Moss, Eddie Hillenbrand, Jonah Hirsch, and Kyoko Makino. The individual profiles are as follows:
Michael Brooks is a Computer Science Student at NAU. He is also security researcher with an emphasis on Web Application Security, Captchas and Cryptography. He is an active participant in the Google and Mozilla bug bounty programs. Michael promotes security education and is the top answerer of Security and Cryptography questions on StackOverflow.com (Rook). He has presented his research at Defcon four years in a row. While working in the security industry for the past 5 years, he has been testing everything from web applications to embedded flight control systems. In 2011 he obtained his CISSP certification.

Owain Moss is a highly successful, driven, and detail-oriented student currently seeking a bachelor of science in computer science and a minor in mathematics at NAU. He is an articulate, adaptive, and motivated individual with proven ability to succeed in both academia and in a professional environment. Upon completion of his undergraduate career at NAU, Owain will be entering into graduate school to complete a master’s in computer science.

Eddie Hillenbrand is a self-motivated, self-taught computer scientist. While still working on his undergraduate degree, he has published several papers with his mentor Dr. James Palmer. In addition to seeking a bachelor of science in computer science, he's also working on a minor in mathematics and a minor in linguistics. Eddie wishes to one day become a professor of computer science. He has worked as a research assistant for the past four years at Northern Arizona University. Before that he worked as a summer camp instructor at iD Tech Camps. Eddie also briefly owned his own software company where he specialized in writing Macintosh applications many of which received great reviews in Macworld magazine and other publications.

Jonah Hirsch is self-motivated, insightful, and entrepreneurial student who will obtain a Bachelor of Science in Computer Science at Northern Arizona University. While studying at Northern Arizona University, Jonah has been employed by the University's Campus Services and Activities IT department, which is responsible for nearly half of the IT infrastructure of the campus. He has developed an open-source alternative to a propriety system for his department to use, saving the university thousands of dollars per year in licensing fees.

Kyoko Makino is a driven and detail-oriented post bachelor student currently seeking a bachelor of science in computer science and a minor in mathematics at NAU. She is a motivated and organized individual with proven ability to succeed in academia and with her work experience as an assistant producer she demonstrates her success in a professional environment as well.
2. Problem Statement

The Accreditation Board for Engineering and Technology (ABET) establishes standards for engineering and computer science programs across the United States in order to ensure their quality. ABET accreditation is “assurance that the understanding and experience of graduates meets the established standards of their profession.” In principle, ABET accreditation is a gold stamp that can be associated with an academic program or a student’s degree, certifying its value. In a world where lives depend on the quality of engineering projects, ABET accreditation is a critical standard for academic programs to meet.

Northern Arizona University’s Computer Science program first received ABET accreditation in October of 1996, and has been continuously accredited since then. In order for a department to receive ABET accreditation, it must establish a complex, multifaceted process for continually monitoring program effectiveness and recording improvements; this process centers on extensively documenting course content, achievement of learning outcomes, and alumni success. Some of the many possible instruments for measuring program effectiveness include:

· Analysis of students’ grades and performance in various courses.

· Analysis of course contents, their delivery methods, and outcome fulfillment.

· Surveys of current students, program alumni, and employees.

The enormous amount of data collected through these various instruments, as well as instruments themselves, is subjected to regular meta-analysis to yield insights and improvements of program’s overall effectiveness in achieving its mission.

Every six years, the ABET monitoring schema itself, the collected data, and the effectiveness to which the data was used to improve the degree program are audited by ABET in a rigorous year-long procedure. It is through this recurrent process of measurement, analysis, and auditing that ABET accreditation serves as a tool for fostering continual improvement of a given degree program.

The major challenges in the ABET accreditation process are task management, and the archival of critical ABET data. All tasks must be assigned to faculty members and carried out on a well-defined schedule. The major problem with the current manual system is that there are an overwhelming number of tasks to complete over the course of the six-year-long process, and people easily lose track of what they are supposed to do and when they are supposed to do it. Furthermore, with the current system, it is often the case that critical ABET data is not properly collected, is lost, or is not properly analyzed. What is needed is an automated system that manages all of the complexities of the ABET task scheduling, and serves as an efficient and centralized data archival system.

3. Process Overview

The following section provides an overview of how the project was tackled. Team roles are discussed, our design methodology is presented, a listing of the deliverables our team provided throughout the semester is given, and our project timeline is illustrated through a diagram and a discussion.

3.1 Team Roles
Team members’ major roles are as follows:

· Michael Brooks- Team leader and lead programmer

· Eddie Hillenbrand- Frontend programmer

· Owain Moss- Backend programmer

· Jonah Hirsch- Frontend programmer

· Kyoko Makino- Unit testing programmer, documentation manager, and
website developer

Member’s roles were decided during the beginning phase of the project, upon consideration of each member’s strengths and weaknesses.

Weekly task reports and issue reports were our main method of project reporting. Main decisions are made during our weekly meeting with our clients. Here, details on how should the system be built are discussed and agreed. Implementation details are discussed among team members, and agreed by either unified agreement or majority vote.

3.2 Design Methodology
Our team chose an iterative design methodology (fig. 1) for this project for several important reasons, which are outlined below.

3.2.1 Accommodation of changing design/requirements

Changes in requirements can often lead to late delivery, unhappy clients, and frustrated developers. In order to address these issues, an iterative approach was desirable because it allowed our team to produce and demonstrate executable software in the early phases of the project. This gave our clients the opportunity to provide valuable feedback that drove a weekly review of requirements and design which, in turn, allowed our team to accommodate our design and implementation to the changing needs of the project.

3.2.2 Early Exposure of Flaws

An iterative approach allowed our team to expose flaws in our design/implementation early on in the project; this gave us the opportunity to address issues throughout the entire development process. The result was a robust architecture and a thoroughly tested, high-quality application.

3.2.3 Team Members Able to Learn Along the Way

Adoption of an iterative approach allowed team members to learn from their mistakes. This was desirable because we are all focused students intent on challenging ourselves, and refining our skill set during this crucial point in our lives.

[image: image1.png]
Figure 1 – Iterative Design Process

3.3 Deliverables
Throughout the course of the project, it was required that our team submits a set of deliverables to our client in order to document and illustrate the evolution of our system. A listing of these deliverables is provided below.

· Team Inventory – this deliverable documented team member roles, assigned tasks, weaknesses, and plans to overcome them. It also included member profiles and resumes.
· Team Standards - This was a more detailed listing of member roles, how meetings are carried out, documentation standards, self-evaluation methods, and standards/rules on behavior and cooperation.
· Requirements and Execution Plan – This document outlined the problems that our solution needed to solve (customer needs), specific functional capabilities that needed to be provided by our system, constraints and feasibility issues, and our project timeline.
· Software Design Specification – This document covered implementation details, provided an overview of our system’s architecture, listed detailed module descriptions, and provided an implementation timeline.
· Final Report – The final report summarized the problem our clients presented to us, provided information about team members, gave an overview of our design process, listed the requirements of our system, gave an overview of our solution, described our approach to testing, and discussed future work related to our project.
· Working System – This was the actual functioning system that met our sponsor specifications.
3.4 Timeline
Due to the nascent nature of our system, requirements acquisition, data model planning, and data model implementation took most of our time in the beginning.

Once we had a set of concrete functionality, we began testing shortly after. In an attempt to provide a robust application, testing has been carried out continually throughout the rest of the project.

Because we needed to develop backend functionalities to bolster all required frontend features, frontend implementation was put on hold until a significant portion of the backend was in place. Consequently, there is still a sizable amount of frontend implementation that needs to be accomplished.
Figure 2 - Timeline
4. Requirements

In order to obtain a concrete understanding of what features our client desired in the system, it was necessary to go through an iterative process of requirements acquisition. During weekly meetings, discussions over the desired system features were carried out with our client; after these meetings, our team decomposed the high-level ideas into concrete functionality, which was then submitted to our client for feedback. Upon receipt of this feedback, our team modified our design/implementation such that it more closely fit our clients’ needs/vision. During this c[image: image2.png]ontinual process of acquisition, implementation, obtaining feedback, and modification, our team was able to compile a concrete set of requirements, which are examined in detail in the following subsections.

4.1 Authentication

The system must provide a simple way to enforce control over resources. The login system will provide support for both Central Authentication Service (CAS) and Open Authorization (OAuth) capabilities. Third-party authentication system must also be supported therefore it is up to organizations to choose their authentication preference.
4.1.1 Use Case: User Login

Scenario: Bob tries to log in.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires the ABET ADMS.

2. Bob is presented with either CAS or OAuth authentication screen.

3. Bob enters his user name and password.

4. The system displays the main UI.

System Behavior: The main architectural component in play here is the Authentication System of choice.

4.2 Access Control

The system must provide access based on user roles. As such, there are a total of 5 access control roles provided by the system. At the very top level, we have the “superuser;” this role is used by company staff, and allows the user to override all access control provided by the system. The next level is University Administrator; this role allows the user access to all records that belong to a given university. The next level is Program Chair; this role allows the user access to all records that belong to a given program. A department chair is able to manage the program’s information and member users. The next level is faculty; this user has limited access to records that belong to a program, and only records related to that program. The lowest role is disabled; this can be used if a faculty member leaves the university or changes programs; this also allows a user to request access to a program, where by the user occupies a disabled role until they are granted access by the program’s chair.
4.2.1 Use Case: Access Control

Scenario: Bob tries to log in and activate a new user Chris.

Actor(s): Bob, an administrator of A1 University’s CS department. Chris is a faculty member of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the ABET ADMS.

2. Bob enters his user name and password.

3. The system recognizes him as an administrator.

4. The screen displays the user interface with ‘activate user’ option.

5. Bob selects the ‘activate user’ option.

6. Chris is now activated.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the Object Manager (OM). The UI handles the front-end display including the workspace, buttons, and menus. The OM handles the creation of objects.

4.3 User Interface

The system must provide a web-based graphical user interface to facilitate user interaction and system management. The interface will allow users to interactively define and manage all data and tasks associated with the ABET accreditation process. The interface will provide access to varying perspectives based on usage scenarios and user privileges. The different perspectives will be:
· Class: The system will provide access to specific class information that will identify how well a class has met the requirements of its associated outcomes. This will be accomplished through access to assessment instruments.

· Course: A course perspective will be provided that identifies the intended outcomes associated with each course.

· Faculty: A faculty perspective will be provided that will allow for the identification and updating of faculty tasks and their current status for completing them.

· Administrator: An administrator perspective will be implemented that provides functionality for creating and modifying outcomes, measures, and faculty tasks.

4.3.1 Use Case: Task Management Display

Scenario: Bob wants to look through the pending ABET tasks and see who is in charge of that task.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.
2. Bob selects the option to display pending ABET tasks.
3. The screen displays pending ABET tasks.
4. Bob selects ‘search’ to filter through the pending tasks to see which instructor is in charge of each task.
System Behavior: The main architectural components in play here are the User Interface (UI) module and the Object Manager (OM). The UI handles the front-end display including the workspace, buttons and menus. The OM handles the listing of pending ABET tasks and searching capability.

4.4 Creation and Modification of Objectives

Users must allow users to create and modify program objectives for their respective program of study. Functionality for creating and modifying the various components of program objectives will be available to administrators:

· Objective university – the university to which the outcome is associated with

· Objective program – the academic program to which the outcome is linked

· Objective index – identifier of the given objective
· Objective description – overview of the given objective
· Objective outcomes – set of outcomes linked to the given objective
Objectives will have up to n associated learning outcomes and will be versioned.

4.4.1 Use Case: Creating an Objective

Scenario: Bob wants to create department objective.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘create objective’.

3. Bob enters the objective to text field.

4. Because Bob is an administrator he has an ability to either increment the major version or save it as a minor version.

5. Bob selects ‘save as a minor version’ and exits.

System Behavior: The main architectural components in play here are the User Interface (UI) module, the Objective module, and the Version module. The UI handles the front-end display including the workspace, buttons, and menus. The objective and version modules handle the creation of objective and appropriate versioning.

4.5 Creation and Modification of Outcomes

Users must be able to create and modify learning outcomes for their respective program of study. A given set of outcomes must be linked to a defined program objective. Functionality for creating and modifying the following components of program outcomes must be available to administrators:
· Outcome university – the university to which the outcome is associated with

· Outcome program – the academic program to which the outcome is linked

· Outcome index – identifier of the given outcome
· Outcome summary – overview of the given outcome
· Outcome scheduling cycle – the cycle upon which a given learning outcome is evaluated
· Supporting courses – set of courses linked to the given outcome
· Outcome measures – set of measurement tools linked to the given outcome
Outcomes will have up to n associated measurement instruments, and will be versioned.
4.5.1 Use Case: Modifying Outcomes

Scenario: Bob wants modify outcomes associated with objective.

Actor(s): Bob, a faculty member of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘objective’ that is associated with the outcome that he wishes to modify.

3. Bob selects outcome and select ‘modify’.

4. Bob enters changes to the text field.

5. Because Bob is an administrator he has an ability to either increment the major version or save it as a minor version.

6. Bob selects ‘save as a minor version’ and exits.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the Outcome module. The UI handles the front-end display including the workspace, buttons, and menus. The outcome handles the creation of outcomes.

4.6 Creation and Modification of Measurement Instruments

Achievement of all learning outcomes is gauged through the use of measurement instruments. As such, users of the system must be able to create and modify measurement tools, embody them in courses if necessary, and link them to outcomes. Functionality for linking individual measurement instruments with up to n learning outcomes is a necessary provision of the system. Measurement tools will be instruments embodied in Wiki Forms such as:

· Rubrics – forms indicating how well certain standards of performance are being met

· Surveys – forms for collecting statistical information about department performance in certain aspects of an academic program

· Course Improvement Documents – documents indicating faculty-defined ideas for improving courses

4.6.1 Use Case: Modifying Assessments

Scenario: Bob wants to modify assessments.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘objective’ that is associated with the assessments that he wishes to modify.

3. Bob selects assessment and selects ‘modify’.

4. Bob enters changes to the text field.

5. Because Bob is an administrator he has an ability to either increment the major version or save it as a minor version.

6. Bob selects ‘save as a minor version’ and exits.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the Assessment module. The UI handles the front-end display including the workspace, buttons, and menus. The assessment handles creation of assessments.

4.7 Scheduling and Task Management

Provision of a scheduling and task management component is a key feature of the system. Faculty members must be able to login to the system and check what tasks they are responsible for, when those tasks are due, as well as the status of their associated tasks. Administrators will be able to assign tasks as well as monitor the status of all tasks. The system must send email reminders for upcoming tasks as well as overdue tasks.

4.7.1 Use Case: Task management

Scenario: Bob wants to check which tasks is Chris responsible for.

Actor(s): Bob, an administrator of A1 University’s CS department. Chris is a faculty member of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘see all tasks’.

3. The system displays the list of all tasks and faculty members associate with them.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the Task module. The UI handles the front-end display including the workspace, buttons, and menus. The task module handles the creation of tasks and listing of current tasks.

4.8 Versioning

The system must provide functionality for versioning. The system must keep track of major and minor revisions. Major revisions are made by administrators, and are changes made to the objectives, outcomes, and/or assessments that affect the departmental structure. Minor revisions are made by faculty, and are small changes made to objectives, outcomes, and/or assessments that do not affect the departmental structure. Administrators will be able to track of revisions by certain users, programs, dates, and semesters. Version-able objects will be:

· Forms – forms are used to collect ABET data

· Courses – units of instruction in one topic area

· Objectives – high-level statements indicating desired academic results from application of program curriculum

· Outcomes – concrete educational achievements serving as criteria for meeting defined educational objectives

· Measurement instruments – tools for evaluating program effectiveness

4.8.1 Use Case: Versioning an Objective

Scenario: Bob wants modify an objective.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘objective’.

3. Bob selects ‘modify objective’.

4. Bob enters changes in the text field.

5. Because Bob is an administrator, he has an ability to either increment the major version or save it as a minor version.

6. Bob selects ‘save as a major version’ and exits.

7. The major version number is incremented. Their current version is now ver2.0.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the Version module. The UI handles the front-end display including the workspace, buttons, and menus. The version module is responsible for keeping track of all versions, both minor and major.

4.9 File Management

The system must provide a mechanism for uploading documents and attach them to components of our data model. Users must be able to upload various types of documents such as pdf, doc, docx, etc. Users will be able to view all documents associated with objects. Users will be able to upload documents associated with course offerings such as:
· Course syllabi – outline of topics to be covered in a course as well as the rules for assessing student performance

· Surveys - forms for collecting statistical information about department performance in certain aspects of an academic program

4.9.1 Use Case: Uploading documents

Scenario: Bob wants to upload a pdf contains survey information to CID.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘see all documents’.

3. Bob selects ‘CID’.

4. Bob enters the CID field and select ‘upload file’.

5. Bob selects a pdf from his local file and selects ‘upload’.

6. PDF file is now uploaded onto CID.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the CID module. The UI handles the front-end display including the workspace, buttons, and menus. The CID module is responsible for keeping track of all uploaded documents.

4.10 Supports for Report Generation and Data Analysis

In order for the data collected by the system to be used in a meaningful manner, it must be organized so that data for reports and analyses can be pulled together from various locations and compiled into a single document. The system must be able to generate reports and export reporting information to a usable format, such as pdf, doc, docx, etc. Users will be able to backup and restore data from the system.
4.10.1 Use Case: Reporting

Scenario: Bob wants to create a word document with collected data.

Actor(s): Bob, an administrator of A1 University’s CS department.

User Steps and system responses:

1. Bob fires up the system and enters login information.

2. Bob selects ‘create pdf document’.

3. Bob selects data to fill the document from drop down menu.

4. Bob selects ‘export’ and a pdf containing selected data is created.

System Behavior: The main architectural components in play here are the User Interface (UI) module and the Data store module. The UI handles the front-end display including the workspace, buttons, and menus. The data store is responsible for saving, backing up, restoring, and retrieving of data.

4.11 Non-Functional Requirements

The website should start loading immediately. The client-side HTML4/CSS5/JavaScript6 must complete loading in less than 5 seconds or display a loading message. No API7 call can exceed 30 seconds in execution time. The auto-shared feature of the Google Datastore8 should not enforce limitations on the data storage requirements for this application. Sort order optimization declarations are required for all datasets that are requested with a sort order.

5. Solution Statement

Our clients required us to build a flexible, extensible accreditation management system based on Web 2.0 technologies. The core system was to be written in Python for Google App Engine and provide a RESTful JSON based web service API. The client was to be written in JavaScript, and have a design based on solid user-centered design, with a focus on tasks a user needs to accomplish rather that on the data model or the backend system.

5.1 Overall Solution

Since our client’s requirements were so specific, we took on the role of standard software consultants. As such, the solution we proposed to our clients was exactly the the solution they requested.

Our approach was to develop a flexible tool that academic faculties can utilize to model the particular ABET process (academic objectives and learning outcomes) employed by their department, and that comprehensively supports execution of that ABET model over time. Our main goal was to create a system that could essentially drive the ABET process by ensuring that critical ABET tasks are completed when they are supposed to be, and that ABET documentation is properly archived and easily accessible. This required that implementation of two major components: a task management system, and a data archival system.

We built a cross platform web application since this was important to our clients. They required us to build a Web 2.0 app from the beginning. The application was built on top of Google App Engine for: flexibility, scalability, and maintainability. Building on top of Google App Engine was aslo a customer requirement.

What f
ollows is a few screenshot highlighting some functionsality in the system.

[image: image3.png]Figure 3.

[image: image4.png]Figure 4.

[image: image5.png]Figrue 5.
5.2 Functional Specifications

Based on our client input, our system must meet the following functional requirements:

· Authentication: We provide support for both Central Authentication Service (CAS) and Open Authorization (OAuth).

· Access Control: Access to resources is base on user roles. There are three major user roles: administrator, faculty, and guest. Administrators have the ability to make active and assign users to a program. Faculty members can create or modify supporting ABET data related to a program. Guests’ access level is read-only.

· Clean Display: A web-based graphical user interface to facilitate user interaction and system management. The interface will allow users to define and manage all data and tasks associated with the ABET accreditation process.

· Create Objectives: Users are able to create and modify program objectives for their respective programs.
· Modify Outcomes: Users are able to create and modify outcomes for each objective.
· Modify Assessment: Users are able to create and modify assessments for each outcome.

· Scheduling and Task Management: The system periodically scans the set off assessments and then creates and schedules tasks for the assessments in the system. Users can view tasks they’ve been assigned. Administrators are able to check the status of all tasks. The system will remind faculty members by email of upcoming tasks that need to be completed.
· Versioning: all ABET materials is tracked and versioned by the system. You can rollback to any previous state and all editing history is kept.
· Uploading Documents: The system can archive any of critical ABET documentation that are not captured by the system in some other fashion.
· Data Collection: The system collects an archives a variety of information including course offerings, course statistics, and assessment responses and so on.
5.3 Architecture Overview

We developed a client-server based solution. The server encapsulates data, business logic, and provides persistent storage. The client is the GUI for end user interaction with the Zabeta system.

Both the client and the server are divided into several more components as shown in Figure 1.

[image: image6.png]Figure 6.

5.3.1 Server Architecture

Our server is built using Google App Engine. Google App Engine is a platform for building web applications. As such, it is really a “cloud” application that acts like a server exposing a RESTful service API. The server has three primary components that together provide a RESTful service API that the client uses.

5.3.1.1 App Engine Datastore

The Datastore “is a schemaless object datastore” [Google1]. It is responsible for persistently storing raw data. In datastore terminology raw data is a data entity. An entity is a set of typed properties associated with a kind.

5.3.1.2 App Engine Python API

We used the App Engine Python Datastore API to define data entities in terms of models with typed properties and methods. The models encapsulate our data along with our business logic. Model definitions are Python classes that are subclasses of db.MoraModel or db.MoraPolyModel. The class name is the model’s kind which is in turn the kind of all data entities created from the model. The model’s properties are defined by declaring instance variables in the model’s class definition. Each property is assigned a type.

5.3.1.3 Mora

Mora bridges the gap between the models on the server and the web browser. Mora provides a nontraditional interface to the models. Since we’re using an object datastore and the datastore API to define our models, the semantic structure of the ABET model is preserved within our data model. Mora provide an API that preserves the semantic graph structure of the data.

5.3.2 Client Architecture

The client is a web application built to run in a web browser. The client has three primary components that together provide a user interface for the application. The purpose of the client is to present data and to allow the user to manipulate the data.

5.3.2.1 Web Browser

In the same way that App Engine is the platform our server is built on, the web browser is the platform our client is built on. In essence the web browser is further divided into three sub components an HTML rendering engine, a CSS engine and a JavaScript execution environment. The web browser makes requests to Mora using HTTP (HTTP is how a browser communicates with a server). The browser also loads responses from Mora into our scripts running in the browser’s JavaScript interpreter.

5.3.2.2 Backbone

Backbone.js is the JavaScript framework we use to structure our client code. Just as the App Engine Python API gave structure to our server code, Backbone.js gives structure to the client code. With Backbone.js we divide our application into three types of constructs:

1. Models: encapsulate data and so-called business logic (i.e. the computations that process data).

2. Views: are the part of the applications the user sees and interacts with. They show data and respond to user actions.

3. Controllers: simply coordinate between the views and models.

The three components models, views, and controllers together make up what is called the Model-View-Controller pattern or MVC for short. Thus, Backbone.js is a MVC framework for web applications.

5.3.3 Client Architecture

Finally we reach the presentation layer. This is composed of two components Handlebars and Bootstrap. Handlebars is a client side templating engine. Given a model or collection of models, the templates construct the HTML that the views render and display. For a web application it is important to have a simple and consistent user interface. Bootstrap gives us a consistent look and feel across our entire application.

5.4 As-built Design

We produced a client-server based application. Much of the final deliverable is similar in spirit to our design. While we in know way built a system that was the embodiment of our design there are at least some aspects in place.

5.4.1 Server As-built

The server is divided into several components. We have a data model that in terms of classes and properties is nearly identical to the designed data model. Where we deviated from the design is in business logic encapsulation. Most business logic handled by the request handlers and is often scattered about the system in several classes and in different files.

5.4.1.1 The Data Model

The data model is a collection of models that describes a kind of entity, including the types and configuration for its properties. Model are defined as Python classes, with class attributes describing the properties. Our application includes the following models.

Authentication and Access Control

In order to provide and facilitate a flexible authentication and access control system, a number of models needed to be implemented. These models are described below.

	Model
	Description

	User
	The User class holds information about a system user.

	AuthenticationMethod
	An AuthenticationMethod is information for how a University authenticates its Users. It allows for the University to use OAuth or CAS and stores the associated information.

	AuthenticationRecord
	An AuthenticationRecord essentially ties together an AuthenticationMethod with a User. It also keeps track of the privileges a User has within the University’s Program.

Institutional Structure

A number of models were also implemented to accurately model the structure of institutions and their associated programs. These models are described below.
	Model
	Description

	University
	The University class inherits from Version and holds metadata about a given University.

	Program
	The Program class inherits from Version and holds information about a department that belongs to a University.

	Semester
	The Semester class holds information about a time period when courses are taught throughout the school year.

	Course
	The Course class inherits from Version and holds metadata related to a given Course. Each Course belongs to a program.

	CourseOffering
	The CourseOffering class inherits from Version and holds information about a specific Course instance.

ABET Structure

In order to provide a flexible structure for housing a given program’s ABET model, as well as access to all of its associated data, a set of models were implemented; these models are describe below.
	Model
	Description

	Objective
	The Objective class inherits from Version and holds all the information about an Objective. Defined by a program, objectives are descriptions of goals that the program intends to meet to maintain ABET accreditation.

	Outcome
	The Outcome class inherits from From and holds information about a given Outcome that has been defined by a Program.

	Measure
	This class is a subclass of an Outcome class; it contains information about instruments and courses used to evaluate a given Outcome.

	Minute
	Minutes inherits from Version and is a revision notepad associated with a program. Anyone within the program can modify this notepad.

	Instrument
	The Instrument class inherits from Form and holds information about an assessment instrument.

	Form
	A form is the parent class that houses the WikiForm. This is used to collect data from Users about measures.

ABET Tasks

A number of models were implemented that maintain, and provide access to, all the information related to a program’s tasking system; these models are described below.
	Model
	Description

	Task
	The Task class inherits from Version and holds information about a task object.

	TodoTask
	TODOTask is a sublass of Task; it represents a singleton Task that is not rescheduled.

	AssessmentTask
	Assessment tasks are tasks that are associated with an outcome that needs to be evaluated on a cyclical basis.

	CourseTask
	CourseTask class inherits from Task and represents a Task object that is carried out with respect to a given Course. CourseTask objects are rescheduled by the system.

	ScheduleLog
	The ScheduleLog class holds/logs information about scheduling events.

Version
In order to handle all versioning information as well as provide a revisioning system for our clients, a Version model was implemented; this model is describe below.

	Model
	Description

	Version
	Version is the parent class of all versioned objects in the system. The version parent is also a set that contains the union of all child-classes.

5.4.1.2 Request Handlers

The request handlers are subclasses of AuthenticationHandler, or RevisionHandler which are in turn subclasses of Mora’s RestHandler and/or App Engine’s RequestHandler.

Authentication Module
There are two authentication handlers that ensure the user is authenticated before allowing them to access. The handlers use a number of predicate methods that enforce access control. Within the authentication handlers module there is also a concrete handler that handles both CAS and OAuth authentication.

Revision Module
The revision module defines a number of classes that handle revisioning in the system. They work on versioned models.

Services Module
The services module defines all the request handlers that make up the web service API. For each data model there is a corresponding request handler. The request handlers have a number of methods that respond to HTTP verbs. Within each request handler there is even more authentication and access control mode. Additionally there is more versioning code.

State Module
This request handler is a subclass of Authentication and is outside of the normal service module. The state handler will retrieve the user information and return it to the requesting client. The handler also has logic for logging out.

5.4.1.3 Schedule and Task Module

Google App Engine is configured to make a request to the schedule handler every 24 hours. The schedule handler will iterate over every program in the system checking if tasks need to be created. The scheduling system ensures that assessment tasks get rescheduled periodically according to a user-defined cycle.

When this happens, the system checks for expired assessment tasks, and then reschedules them as necessary. Next, all current tasks are checked against a Program’s defined nagging schedule, and reminders are sent out to users appropriately. The scheduling script also checks for NewCourseOfferingTasks that need to be fired, and if one is found, the script creates the NewCourseOffering and all the associated CourseTasks.

A utility module has also been implemented (task_util.py), which provides the functionality for the initial creation of tasks and the interpretation their scheduling cycle.

5.4.1.4 File Module

The file module provides a number of request handlers that handle uploading and downloading files.

5.4.1 Client As-built

Like the server, the client is divided into several components. We again deviated from the design in that business logic is not in the models. Most business logic is scattered throughout the views in callback functions. The client has a base HTML file, a main JavaScript file, a CSS file and many templates.

5.4.1.1 The Base HTML File

The index.html file is the skeleton that the rest of the client is built with. The file begins by linking to a number of stylesheets that control the presentation of the subsequent HTML. The file then defines the navigation bar in HTML followed by a container that all dynamically built HTML will be inserted into. After the container the JavaScript files are included. Finally the Handlebars templates are appended to the end of the file (this is only done for development).
5.4.1.1 The Main JavaScript File

Most of the included JavaScript files are libraries which won’t be discussed since we did not build them. The file that matters here is src/zabeta.js. The next sections will describe the major components within src/zabeta.js.

The Zabeta Namespace

The src/zabeta.js file begins by declaring a namespace called ‘Zabeta.’ The rest of our client application is defined within the Zabeta namespace.In the Zabeta namespace there are models, collections, views, and controllers. Most of these components are defined with the help of Backbone.js, which provides the MVC abstractions.

Models

Most of the client models correspond to the sever models. The client models are instantiated with representation data retrieved from the server. The models store attributes that make up their data, they track changes, and most importantly they know how to load themselves and save themselves to the server.

The client has the following models:

Zabeta.User, Zabeta.Program, Zabeta.Semester, Zabeta.Objective, Zabeta.Task, Zabeta.Course, Zabeta.ProgramCourse, Zabeta.ProgramCourseOffering, Zabeta.SpecificCourseOffering, Zabeta.NewCourseOfferingTask, Zabeta.Outcome, Zabeta.AuthenticationMethod, Zabeta.ScheduleLogItem, Zabeta.Measure, Zabeta.Instrument, Zabeta.Version, Zabeta.MajorVersion

Collections

Collections are simply sets of models. Collections know how to load themselves and how to save themselves to the server. Collections trigger events when certain actions take place on them.

The client has the following collections:

Zabeta.UserList, Zabeta.ProgramUserList, Zabeta.ProgramList, Zabeta.SemesterList, Zabeta.ObjectiveList, Zabeta.TaskList, Zabeta.myCourseList, Zabeta.CourseList, Zabeta.ProgramCourseList, Zabeta.ProgramCourseOfferingList, Zabeta.SpecificCourseOfferingList, Zabeta.NewCourseOfferingTaskList, Zabeta.OutcomeList, Zabeta.ScheduleLogList, Zabeta.MeasureList, Zabeta.InstrumentList, Zabeta.VersionList, Zabeta.MajorVersionList

Views

Unfortunately the project suffered from a lack of abstraction. Many of these could be abstracted into a much smaller set of generic views rather than this enormous collection of very specific views.

The client has the following views:

Zabeta.UserListItemView, Zabeta.UserListView, Zabeta.UserView, Zabeta.ProgramDetailsView, Zabeta.ProgramListItemView, Zabeta.ProgramListView, Zabeta.SemesterListItemView, Zabeta.SemesterListView, Zabeta.CoursePlannerSemesterView, Zabeta.CoursePlannerSemesterListItemView, Zabeta.ObjectiveView, Zabeta.TaskListItemView, Zabeta.TaskView, Zabeta.TaskListView, Zabeta.CourseListItemView, Zabeta.CourseView, Zabeta.CourseListView, Zabeta.CourseDropdownListItemView, Zabeta.CourseDropdownListView, Zabeta.CourseDropdownListView, Zabeta.CoursePlannerCourseListItemView, Zabeta.ProgramCourseListItemView, Zabeta.ProgramCourseListView, Zabeta.ProgramCourseOfferingListItemView, Zabeta.ProgramCourseOfferingListView, Zabeta.SpecificCourseOfferingListItemView, Zabeta.SpecificCourseOfferingListView, Zabeta.OutcomeView, Zabeta.AuthenticationMethodItemView, Zabeta.ScheduleLogItemView, Zabeta.ScheduleLogListView, Zabeta.FormView, Zabeta.InstrumentDropdownListItemView, Zabeta.InstrumentDropdownListView, Zabeta.MeasureView, Zabeta.MasterListItemView, Zabeta.MasterListView, Zabeta.DetailView, Zabeta.ListItemView, Zabeta.ListView, Zabeta.VersionListItemView, Zabeta.VersionListView, Zabeta.MajorVersionListItemView, Zabeta.MajorVersionListView

Controllers

Controller simply coordinates between the views and models. We have very few of them.

The client has the following controllers:

· Zabeta.uniadminPage

· Zabeta.adminPage

· Zabeta.userPage

· Zabeta.collectionPage

· Zabeta.detailPage

6. Testing, Usability and Future Work

Because implementation was done in small chunks, our testing methods mainly consist of unit testing. Data models such as program, objective, and outcome were built according to the specifications and tested to make sure that they produce expected results. Versioning is also heavily tested. Since every piece of data needs to be stored properly and in retrieval manner, saved files were scrutinized to determine whether data integrity is kept.

6.1 Testing

The main modules that were tested most heavily are:

· Data models: Having correct data models is the key to the system’s success since it handles all of the specified functionalities. If the models do not provide needed functionalities, the system will not work. Once we implemented most of the functionalities, user testing was done to determine whether this module functions the way they are expected.

· Task Scheduler: Created tasks need to produce future tasks on specified dates. So we created tasks and see if they produce copies of themselves at expected future times. This tells us whether this module is working properly.

· Versions: After the user enters data to the dashboard for the first time, all changes thereafter need to be versioned and saved. To test this functionality, we entered test data to the dashboard, saved (ver1), make changes then saved (ver2) again. Then the data is rolled back to ver1. We confirmed that doing so only reverted that saved changes from ver1 to ver2 while other data integrity were kept intact.

6.2 Usability

We did only a small amount of user acceptance testing. We made snapshots of the code and upload it to Google App Engine. Our clients then test out the latest version and provide us with valuable feedback.

6.3 Future Work

There are few future work to consider; auto verification of instruments and widening application scope.

· Auto verification of instruments: Because our focus is to automate as many functionalities as possible, verification on whether an instrument, such as senior exit survey, have been completed should be done automatically.

· Widening application scope: NAU is not the only university that has accredited departments. There are roughly 660 universities worldwide that go through the same (if not, similar) accreditation cycles, and they can all use our system.

With most of the functionalities now in place, we believe we have created usable software.

6.3.1 Non-integrated features
There are few functions that we did not finish implementing due to time constraints:

· Minutes: Minutes are summarized record of the proceedings at a meeting. Clients have asked to implement this function so that they can take notes while they are in various meetings.

· Assigning TODO tasks: TODO tasks are non-repeating, one time tasks that could be assigned to people.

· Graphical Representations of Data: Users should be able to create various graphical analyses, such as graphs, charts, or tables based on various collected data. Displayed data should be interactive also.

· Restoring data: Currently, there is no way to restore deleted data from the client-side user interface. The only way to restore data is from the backend.

We will continue through summer to finish implementing these unfinished works, as well as to continue refine the system.

7. Conclusion

We have come so far- sleepless nights, personal sacrifices, and overcoming conflicts are all distant memories. We are proud of what we have produced- a departmental management system for ABET accreditation process. What we have produced may not be the ultimate accreditation solution, but definitely is a demonstration of what it could be. Our job was to turn our clients’ dreams into reality, and we have accomplished that by providing a dashboard user interface supported by backend functionalities. Our system not only supports for basic accreditation needs, but also flexibility and scalability. The potential users outside of Northern Arizona University can take this system and extends functionalities to fit their needs.

In order for software to have long-term life cycle, it must be planned well. Core functionalities must exist within the system, but it also needs to allow new both foreseen and unforeseen functionalities to incorporate seamlessly. This is not easy task to accomplish, but by creating a web application utilizing many popular open source materials allowed us to accomplish both characteristics- solid, yet flexible application. Custom building a system that suits one of the most complicated accreditation processes also helped here. Because of this characteristic, it is easy to encompass less complicated processes, such as high school accreditation process.

We would like to thank our clients/mentors- Dr. Doerry and Dr. Palmer for giving us chance to help solving this problem. It was our pleasure to work on the system as this experience was a great opportunity for us to learn not only the importance of understanding the problem and requirements given to us, but to learn how to work as a team. With upcoming refinements to the system, we believe that it will serve as a great asset to the clients, as well as to Northern Arizona University Computer Science program.
�

�

26

